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ABSTRACT

New AC-Heated Probes  Method  using  two low-inertial probes (wire and strip of  foil)

is offered. The probes are immersed into liquid and heated by infrasonic frequency sine

wave current. Projections of the signal on imaginary axis (quadrature parts) are registered

at the same frequency as voltage fed the  probes.  With  use  of new simple asymptotic

formulas it is possible to calculate directly the absolute values of  thermal  properties of

liquids. Thermal  effusivity is determined from value of signal from the foil  probe and its

area. Thermal conductivity is determined  from  the  value  of signal from the wire probe

and its length.  The received value of  thermal effusivity is used to calculate correction

for  thermal conductivity value. Thermal diffusivity and volumetric specific heat then can

be easily calculated. Ways of  elimination of  free convection influence are proposed.

KEY WORDS:  liquids; measurement techniques, periodic heating, specific  heat;

thermal conductivity;  thermal diffusivity; thermal effusivity.



1. INTRODUCTION

For the first  time  AC-Heated  Wire  Method  was  offered  ( to measure a  group  of

four thermal  properties  -  TP)  by L.P.Filippov [1]. It was developed in Dissertations of

S.N.Nefedov (1980), S.N.Kravchun  (1983)  and A.S.Tleoubaev (1987) on Physical

faculty of  Moscow Lomonosov State University. The method consists in registration  of

amplitude and phase of  tripled frequency signal appearing on the bridge's diagonal in one

of arms of which  a  low-inertial  probe - thin wire - immersed into liquid is connected

[2-6]  whereas the  bridge is  fed  by sine wave current. The method  has  the  series  of

doubtless  advantages  comparing other methods, as follows:

- Very  small  thickness of the probed layer of liquid that makes the method especially

effective at high temperatures  because  the  obtained  thermal conductivity  are  purely

conductive  ("molecular")  one without radiative contribution.

- High informative outlet:  a group of  four TP and  temperature are measured.

- Miniaturity and simplicity of measurement cell, that permits to use a very small

quantities  of liquid ( few cubic cm and less ) for measurements.

- Opportunity of total automatization of the measurement process and creation of

installation ( device) for realization of non-interrupted measurements (or control ) in

regime of scanning on temperature and pressure .

Despite of  all  these merits,  the  method  is poorly widespread among researchers

comparisons with Transient Hot Wire Method (see, for example [7] ).

Retardation reasons, as appear, are:

- This method practically never was used for receipt of absolute values of  TP,  but only

for relative measurements,  referred to properties of reference substance - toluene.

- Misgivings that being present constant overheat of the probe and  being  reason  of  free

convective flows  can result in receipt of  unreliable  TP values [8].

- Intricate  mathematical  processing  of received data as far as absence of  formulas for

direct calculation of  TP.  Properties  should  be  computed  by consecutive  iterations

with use of cylindrical Kelvin functions.



- Bulky measurement procedure related  with  necessity  of  registration  of amplitude and

phase of  tripled frequency signal.

 In the given work ways of overcoming  the  listed  retardation  reasons  are

offered. The simplification of the measurement procedure and installation is reached by

registration only a projection of signal  of  main  frequency  on imaginary  axis  -  so

called quadrature  signal  - and by using of simple asymptotic formulas for calculations.

Registration of the quadrature signal which brings information about probe's and liquids

TP is considerably easier from technical point of view than registration of tripled

frequency signal parameters.  Also the quadrature signal practically does not sense the

temperature drift of the cell that makes optional  its  strict thermostating.

2. THEORY

2.1. Solution of differential equation for temperature waves

When solving a problem of finding complex field of temperature waves the

common  thermal  conductivity  equation  is  reduced (for complex alternating component

of temperature -
~
T  )  to  solution  of  wave  differential equation being a special case of

Helmholtz's one [9,10]:

 ∆ ~
T  - (2 iω / a ) 

~
T  = 0                                                    (1)

where ∆ - Laplace's operator;  i - imaginary one;  ω - cyclic  frequency  of voltage  that

feeds  probe;  a -  thermal  diffusivity  of  the probe's environmental. The given  equation

is a differential equation in partial derivative of second order and of  elliptical type [9,10]

General solutions of this equation are:

1) in case of flat waves - linear combination of  exponents:

 
~
T  = A exp { -ikx } + B exp { ikx }                                           (2)

where k=(-2iω/a)1/2 - wave number of  the temperature wave;  x - distance  from  a plane

of foil's center;



2) in case of cylindrical waves -  linear  combination  of  modified  Bessel functions I0 and

K0  or that of  Kelvin functions berκ + ibeiκ  and  kerκ + i keiκ:

~
T  = A⋅I0(i

1/2κ) + B⋅K0(i
1/2κ)  = A⋅(berκ + i ⋅beiκ) + B⋅(kerκ + i ⋅keiκ)              (3)

where κ  -  dimensionless  thermal  similarity  parameter  for  the field of  temperature

waves - analog of  Fo-1/2 ( Fo - Fourier number, r - radius coordinate):

κ = r ⋅(2ω /a)1/2                                                                (4)

 First terms in these general solutions describe a wave the amplitude of which

grows with increase of argument ( x or r ) -  i.e.  approaching  wave. Correspondingly the

second  terms  describe  a  wave the amplitude of which diminishes with increase of

argument - i.e. moving away wave.

To find a special  solution of a particular thermal problem it is required to define

the complex constants A and B substituting these general  solutions into following

boundary conditions:

i) condition of probe's thermal balance - law of energy conservation;

ii) Sommerfeld's condition  of attenuation of  temperature wave at infinity [9];

iii) equality of temperatures and thermal flows at probe's surface - ideal thermal contact;

iv) some additional conditions, if  needed  for solving more difficult problems [6,11].

As a result, the complex  alternating components of the probe's temperatures 
~
T

(Re
~
T >0, Im

~
T  < 0 ) are related with their reduced dimensionless complex temperatures

~Θ  as follows:

 
~
T =[W/(4Cmω)] ⋅ ~Θ (κ,η)                                                           (5)

where W - amplitude of electrical power in probes;  C - specific heat of the probe's

material at constant pressure;  m - mass of the probe;  κ - thermal similarity parameter -

see Eq. (4) -where in  case  of  wire its radius is used and in case of foil its half-thickness

h  is used instead of the radius coordinate r;   η - ratio of volumetric specific  heats  of

probe's  material  and  of  environmental divided  by  2:

 ηw=Cwρw/(2Cρ)                                                              (6)



ηf =Cf ρ f  /(2Cρ)                                                              (7)

- the subscripts w and  f  relate to wire and  foil, respectively.

 For probes located in vacuum  κ is very small ~ 10-4-10-5, η→ ∞ , κη→∞ ,

κ2η→∞  and  
~Θ = -i.  This with Eq.(5) can be used for calibration a value of

(dR/dT)/(Cm)  to determine then  a value of  
~Θ  from the measured 

~
T  value [2-5].

For probes located in liquid the following expressions for 
~Θ  were received:

1) in case of infinitely extended foil:

~Θ f (κf ⋅ηf )= [ i + i 1/2 / (2κf ηf )]
-1                                                    (8)

2) in case of infinitely long wire:

 
~Θ w (κw ,ηw )= [ i - (ker'κw + i ⋅kei'κw)/(kerκw + i ⋅keiκw)/(κf ⋅ηf )]

-1               (9)

kerκ, keiκ, ker'κ, kei'κ  - Kelvin functions and their derivatives with respect to κ.

During deriving  these equations (which are valid for all values of κ and η) it was

assumed that temperature waves inside the  probes are absent because its lengths:

l*= 2π[a/(2ω)] 1/2                                                        (10 )

 are much longer than the foil's thickness and the wire's diameter owing to that  metals

has  much bigger thermal diffusivity than liquids.

2.2. Receipt of thermal effusivity absolute values by foil probe

To separate real and imaginary parts Eq.(8) can be re-written as

~Θ f (κf ηf )= [2 1/2κf ηf - i⋅κf ηf (κf ηf +21/2)] / [1+2 ⋅21/2κf ηf
  +4(κf ηf)

2]           (11)

Using  Eq.(5) it is possible to get a formula  to  determine  an absolute  value  of  thermal

effusivity ε  through measurement  of imaginary component of signal from the foil probe

( just as earlier through measurement of amplitude of tripled frequency signal [1])

ε = W / [4(2ω)1/2⋅Sf ⋅Im
~Θ f ] ⋅ (1+δf )                                          (12)

 δf  ≅ - 4(κf ηf )
2                                                        (13)



where Sf  - area of the foil  probe. Significance of  the  correction  δf  is very small

(thickness of foil 2h is about 1-3 µm, so κf ~0 01-0.03,  η ~1) and it is possible to be

neglected, but if wanted it may be taken into account:

κf ηf  ≅  - [2⋅21/2 Im
~Θ f   Cf  mf  ω] / W                                         (14)

To ensure  that the foil probe it was possible to be as a source of  flat

temperature waves its width ( ~1-2 mm) should be many times longer than a length of

the temperature wave (~0.01-0.05 mm ).

2.3. Approximate  formulas  for  receipt  of absolute TP values by the wire probe

New simple formulas for direct calculation of absolute TP values can be received

with use of  second order asymptotic  formulas for Kelvin functions used in Eq.(9):

kerκ = -ln(κγ/2) + (π/16)⋅κ2 + O(κ4)                                          (15)

keiκ = -π/ 4 + [1-ln (κγ/2)]⋅κ2 / 4 + O(κ4);                                (16)

ker'κ= -1/κ + (π/8 )⋅κ + O(κ3)                                                    (17)

kei'κ= κ/ 4 - ln (κγ/2)⋅κ/2 + O(κ3)                                              (18)

( γ -  Euler's  constant equals  to 1.781072418...)

Substituting these  approximate expressions into Eq.(9) the reduced dimensionless

complex temperature 
~Θ  of the wire probe is possible to be received:

~Θ w(κw,ηw) = -κ2
wηw ln(κwγ /2) (1+δ1) / (1+δ3) - i (π/4) κ2

wηw (1+δ2) / (1+δ3)     (19)

and consequently, substituting in Eq.(5) - formulas for direct TP calculation from results

of measurements by the wire probe:

λ ≅  -W / (16 Lw Im
~Θ w)⋅ (1+δ2) / (1+δ3)                                      (20)

a ≅  r2
w γ 2 ω /2 ⋅exp{-(π/2) (Re

~Θ w / Im
~Θ w) (1+δ2) / (1+δ1)}                     (21)

here δ1, δ2, δ3 - small corrections:

δ1 = - (π/8)κ2
w / ln(κwγ /2) +O(κ4

w);                                          (22)

 δ2 =(4/π)κ2
wηw{[  ln

2(κwγ /2)+π2/16](1-0.5/ηw)+ln(κwγ /2)/2/ηw -0.25/ηw}+O(κ4
w)    (23)



δ3 = (π/2) κ2
wηw (1-0.5/ηw) + O(κ4

w);                                           (24)

These corrections δ1, δ2, δ3 ,  size of which at κ < 0.3 ( 0.5 < η < 1.3 ) does not exceed

few percents,  can be calculated with help of following expressions received from

approximate formulas of the first order:

κ2
wηw ≅ -16Cwmwω Im

~Θ w /(πW)                                                   (25)

ln(κwγ /2) ≅ (π/4) (Re
~Θ w / Im

~Θ w)                                                  (26)

κ2
w ≅(4/γ2) exp{(π/2)(Re

~Θ w / Im
~Θ w)}                                                (27)

ηw=  κ2
wηw/κ2

w                                                                     (28)

As evident from the Eq. (19) to receipt  absolute  value of  thermal conductivity it

is sufficient to measure imaginary component of  the wire probe signal. The knowledge of

probe's length Lw is  required.  To receipt  thermal diffusivity absolute value from the

Eq.(21) it is sufficient to measure  a  phase  (or  ratio  of synphase  and  quadrature

components)  of  the  wire's  temperature  oscillations  and frequency  ω. Knowledge of

wire probe's radius is required.  Besides, of course, values of power supply W and of

derivative dR/dT  are needed.

Application  of  these  asymptotic  Eqs.(15-27) is lawful if one use sufficiently thin

wires and not very high frequencies of feeding voltage for k  to be not bigger than ~0.3.

For example,  for a wire of 12.7 µm diameter at  frequency  of  feeding voltage  of  5  Hz

and typical value of thermal diffusivity of liquid ~9 ⋅10-8 m2⋅s-1 ( toluene at normal

conditions) κ =0.168.

Computer calculations  have  shown ( see Fig.1.),  that deviations of values Im
~Θ

and Im
~Θ /Re

~Θ ,  calculated with approximate Eqs.(19,22,23,24)  comparing  these

functions calculated with exact  Eq.(9) does not exceed 0.2 %  at κ < 0.3 ( calculations

were made for values of η  from 0.6  to 1.2 -  typical values for liquids at normal

conditions and platinum probe).
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Fig. 1.  Deviations of values of  Im
~Θ  (smooth lines) and Im

~Θ /Re
~Θ  (rough lines) calculated  with help

of  approximate  Eqs.(19, 22,23,24)  comparing  with  exact Eq(9)  vs. κ  for some  values of  η.

Measurements of  Re
~Θ , (and correspondingly of ratio Im

~Θ /Re
~Θ )  with  good

accuracy  is  possible  only  at registration on  the tripled frequency because a value of

Re
~Θ at the  main frequency is  merged  with  synphase  signal  of non-ideality  of bridge

balancing (which is a subject to strong influence of cell's temperature drift).  In following

section will be shown how it  is possible  to  measure  group  of  four  TP  without need

of registration of tripled frequency signal parameters.

2.4. Use of two probes for receipt of group of four TP

With registration of values of  Im
~Θ  from wire and foil probes on the main

frequency ω,  the absolute values of group of four TP successively appears possible to be

received on following procedure:



i) Value  of  thermal  effusivity ε  from measured value of  Im
~Θ f  by Eq.(12).

ii) Approximate values of thermal conductivity λ and product κ2η  from  measured value

of Im
~Θ w  by Eqs. (20)  and  (25).

iii) Approximate value of thermal diffusivity by formula:

                                a=λ2/ε2                                                                  (29)

and then approximate value of parameter κ  by Eq.(4) (value  of  the wire's  radius rw is

approximately known)

iv) Approximate value of  parameter ηw  by formula :

  ηw=(κ2
wηw ⋅a)/(r2

w⋅2ω)                                                    (30)

v) Values of corrections δ2 and δ3  by Eqs.(23,24) and exact value of thermal

conductivity λ  by Eq(20).

vi) At last,  exact values of two other TP  -  thermal  diffusivity  a  on Eq. (29) and

volumetric specific heat  Cρ by formula:

                                 Cρ=ε2 /λ                                                            (31)

Another more  convenient  way  of  receiving  exact  value  of  thermal

conductivity λ (instead  of  item v) is through the use of graph on Fig.2 where the value

of correction  for approximate thermal conductivity  value  versus parameter κ  for

various  values  of parameter η  is plotted.  As far as the correction is small (it does not

exceed few percents) accuracy of this graph is quite acceptable.

In general, if only thermal conductivity measurements using only  wire probe  are

carried  out  then  handbook data for calculation of approximate parameter η can be used

and parameter κ can  result through Eq. (25)  to use graph on Fig.2 to determine the

value of correction for λ.
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Fig. 2.  Correction  for  thermal conductivity calculated  by exact Eqs.(9,5) vs. κ  for some values of η.



3. EXCLUSION OF FREE CONVECTIVE FLOWS INFLUENCE

In the method of AC-Heated Probes  free  convective  flows  can  take  place

because  of  probe's  constant  overheating  concerning  to cell walls. Thermal boundary

layer thickness δ  at free convection can be estimated  as [12] (if  the probe is vertical):

δ  ≅  [(4ν 2x)/(g β' T)]1/4                                                       (32)

where ν - kinematic viscosity of the liquid,  x - distance from the lower end of the probe,

g - 9.8 m⋅s-2,  β' - factor of liquid's thermal expansion,  T - probe's overheating.

 Significance of δ   for toluene at  473K  and at overheat T=4K is about 0.1 mm

already at  x = 0.032 mm and then increases as  x1/4 .   At the same time the  length  of

temperature  wave is about  0.01-0.05 mm, and owing to that the temperature wave is

strongly attenuates ( on length of wave in exp{-2π}  ~500 times) so only  motionless

boundary layer of liquid adjacent to the probes surfaces is probed during measurements.

As a further checking a thermal problem  assuming  the  equality  to  zero  the

temperature oscillations 
~
T on some distance δ  from the wire's  surface (for instance

owing  to  flow  of liquid in parallel  of  probe's axis ) was analytically solved.

Computations on basis of the received solution showed that in  case  if  the length  of

temperature wave is less than δ  (thickness of boundary layer of liquid ) then the flow of

liquid practically does not influences  to  wire's  temperature oscillations.

The most simple and reliable way  to exclude  the distorting influence of

convective flows is  the greatest possible reduction of the cell's diameter. Within the cell

of small  diameter convective  flows are practically  absent,  that guarantees the receipt of

undistorted TP values.  As was experimentally shown in [13] slow flows does not

influence to the probe's temperature oscillations at Reynolds numbers up to 150 and at

flow velocities up to few cm⋅s-1 (at frequency 23 Hz).

On basis  of  above-stated  reasons,  and  also  being  present  experience the best

solution for the cell construction is a probe,  tightened along axis of  a tube of  3-5 mm

ID. Tension created through small spring  or weight  is necessary as  far  as owing  to



probe's lengthening  the  amplitude of cross oscillations in the middle of the probe is equal

to:

 Lw(α'  ~
T /2)1/2                                                          (33)

( α'- temperature factor of linear extension - for  platinum  equals  ~9 ⋅10-6 K-1) in  case

of non-tightened  probe  can  exceed in many times the wire's diameter (12-20 µm)  that

is not  permissible.  Trial  approaches  to measure  TP  of  reference liquids - toluene and

carbon tetrachloride  - using non-tightened sagged probes almost always resulted in

receipt of distorted TP values.

5. CONCLUSIONS

New simplified AC-Heated Probes Method  with direct calculation formulas for

measurements  of thermal  conductivity, thermal effusivity, thermal diffusivity  and

volumetric specific heat  of  liquids with use of  two low-inertial probes - wire and foil -

and  registration  of quadrature signal on frequency of feeding voltage is developed.

Installation  based on the method can be  assembled with use of serially produced vector

generator and lock-in microvoltmeter. Description of  the installation, its error analysis

and testing results soon will be presented in coauthorship  with O.L.Kotlyarov.

 This method  and formulas also can become a  base for  a  new  type of

intelligent  transducers  for non-interrupted measurement  and/or  control  of  TP  in

chemical  engineering  processes.
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FIGURE CAPTIONS

Fig. 1.  Deviations of values of  Im
~Θ  (smooth lines) and Im

~Θ /Re
~Θ  (rough lines)

calculated  with help of  approximate  Eqs.(19, 22,23,24)  comparing  with  exact Eq(9)

vs. κ  for some  values of  η.

Fig. 2.  Correction  for  thermal conductivity calculated  by exact Eqs.(9,5) vs. κ  for

some values of η.

LIST  OF SYMBOLS

a  thermal diffusivity a=λ/Cρ

berκ, beiκ, ber'κ, bei'κ  Kelvin functions and their derivatives

C  specific heat at constant pressure

Cρ  volumetric specific heat

g  gravitational  acceleration

h  half-thickness of the foil probe

I0, I1  modified Bessel functions

i  imaginary one

K0, K1  modified Bessel functions

 kerκ, keiκ, ker'κ, kei'κ  Kelvin functions and their derivatives

L  length of  the probe

l*   length of temperature wave  l*= 2π[a/(2ω)] 1/2

m  mass of the probe

r  radius

S  foil probe's area

T  probe's overheat

~
T  complex alternating component of the probe's temperature

W  amplitude of power supply in the probe



x distance from a plane of foil's center

GREEK SYMBOLS

α' temperature factor of probe's linear extension

β'  temperature factor of  liquid's  volume expansion

γ  Euler's constant  γ=1.7810724...

∆  Laplace's operator

δ  temperature boundary layer thickness

δ1, δ2, δ3, δf  small  dimensionless corrections

ε  thermal effusivity,  ε = (λCρ)1/2

η  ratio of volumetric specific heats of probe's material and liquid divided by 2:

    ηw= Cwρw /(Cρ),  ηf= Cf ρf  /(Cρ).

κ  thermal similarity parameter: rw(2ω/a)1/2 for the wire and hf(2ω/a)1/2 for the foil

λ  thermal conductivity

ν  kinematic viscosity

ρ  density

~Θ  reduced  dimensionless complex  temperature  of the probes

ω  circular frequency of the voltage

SUBSCRIPTS

f  referred to the foil probe

w referred to the wire probe


